Question:
Prove the following trigonometric identities.
If $x=a \sec \theta+b \tan \theta$ and $y=a \tan \theta+b \sec \theta$, prove that $x^{2}-y^{2}=a^{2}-b^{2}$
Solution:
Given that,
$x=a \sec \theta+b \tan \theta$,
$y=a \tan \theta+b \sec \theta$
We have to prove $x^{2}-y^{2}=a^{2}-b^{2}$
We know that, $\sec ^{2} \theta-\tan ^{2} \theta=1$
So,
$x^{2}-y^{2}$
$=(a \sec \theta+b \tan \theta)^{2}-(a \tan \theta+b \sec \theta)^{2}$
$=\left(a^{2} \sec ^{2} \theta+2 a b \sec \theta \tan \theta+b^{2} \tan ^{2} \theta\right)-\left(a^{2} \tan ^{2} \theta+2 a b \sec \theta \tan \theta+b^{2} \sec ^{2} \theta\right)$
$=a^{2}\left(\sec ^{2} \theta-\tan ^{2} \theta\right)-b^{2}\left(\sec ^{2} \theta-\tan ^{2} \theta\right)$
$=a^{2}-b^{2}$
Hence proved.