Question:
Prove the following trigonometric identities.
$\frac{1+\cos A}{\sin ^{2} A}=\frac{1}{1-\cos A}$
Solution:
We need to prove $\frac{1+\cos A}{\sin ^{2} A}=\frac{1}{1-\cos A}$
Using the property $\cos ^{2} \theta+\sin ^{2} \theta=1$, we get
$\mathrm{LHS}=\frac{1+\cos A}{\sin ^{2} A}=\frac{1+\cos A}{1-\cos ^{2} A}$
Further using the identity, $a^{2}-b^{2}=(a+b)(a-b)$, we get
$\frac{1+\cos A}{1-\cos ^{2} A}=\frac{1+\cos A}{(1-\cos A)(1+\cos A)}$
$=\frac{1}{1-\cos A}$
= RHS
Hence proved.