Question:
Prove the following trigonometric identities.
$\frac{1+\cos \theta-\sin ^{2} \theta}{\sin \theta(1+\cos \theta)}=\cot \theta$
Solution:
In the given question, we need to prove $\frac{1+\cos \theta-\sin ^{2} \theta}{\sin \theta(1+\cos \theta)}=\cot \theta$.
Using the property $\sin ^{2} \theta+\cos ^{2} \theta=1$, we get
So,
$\frac{1+\cos \theta-\sin ^{2} \theta}{\sin \theta(1+\cos \theta)}$
$=\frac{1+\cos \theta-\left(1-\cos ^{2} \theta\right)}{\sin \theta(1+\cos \theta)}$
$=\frac{\cos \theta+\cos ^{2} \theta}{\sin \theta(1+\cos \theta)}$
Solving further, we get
$\frac{\cos \theta+\cos ^{2} \theta}{\sin \theta(1+\cos \theta)}=\frac{\cos \theta(1+\cos \theta)}{\sin \theta(1+\cos \theta)}$
$=\frac{\cos \theta}{\sin \theta}$
$=\cot \theta$
Hence proved.