Prove the following trigonometric identities.
$\sec ^{6} \theta=\tan ^{6} \theta+3 \tan ^{2} \theta \sec ^{2} \theta+1$
We need to prove $\sec ^{6} \theta=\tan ^{6} \theta+3 \tan ^{2} \theta \sec ^{2} \theta+1$
Solving the L.H.S, we get
$\sec ^{6} \theta=\left(\sec ^{2} \theta\right)^{3}$
$=\left(1+\tan ^{2} \theta\right)^{3}$
Further using the identity $(a+b)^{3}=a^{3}+b^{3}+3 a^{2} b+3 a b^{2}$, we get
$\left(1+\tan ^{2} \theta\right)^{3}=1+\tan ^{6} \theta+3(1)^{2}\left(\tan ^{2} \theta\right)+3(1)\left(\tan ^{2} \theta\right)^{2}$
$=1+\tan ^{6} \theta+3 \tan ^{2} \theta+3 \tan ^{4} \theta$
$=1+\tan ^{6} \theta+3 \tan ^{2} \theta\left(1+\tan ^{2} \theta\right)$
$=1+\tan ^{6} \theta+3 \tan ^{2} \theta \sec ^{2} \theta$ (using $1+\tan ^{2} \theta=\sec ^{2} \theta$ )
Hence proved.