Question:
Prove the following trigonometric identities.
$\frac{1+\cos A}{\sin A}=\frac{\sin A}{1-\cos A}$
Solution:
We need to prove $\frac{1+\cos A}{\sin A}=\frac{\sin A}{1-\cos A}$
Now, multiplying the numerator and denominator of LHS by $1-\cos A$, we get
$\frac{1+\cos A}{\sin A}=\frac{1+\cos A}{\sin A} \times \frac{1-\cos A}{1-\cos A}$
Further using the identity, $a^{2}-b^{2}=(a+b)(a-b)$, we get
$\frac{1+\cos A}{\sin A} \times \frac{1-\cos A}{1-\cos A}=\frac{1-\cos ^{2} A}{\sin A(1-\cos A)}$
$=\frac{\sin ^{2} A}{\sin A(1-\cos A)}$ (using $\sin ^{2} \theta+\cos ^{2} \theta=1$ )
$=\frac{\sin A}{1-\cos A}$
Hence proved.