Prove the following trigonometric identities.
$\frac{\cot A-\cos A}{\cot A+\cos A}=\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}$
In the given question, we need to prove $\frac{\cot A-\cos A}{\cot A+\cos A}=\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}$
Here, we will first solve the LHS.
Now, using $\cot \theta=\frac{\cos \theta}{\sin \theta}$, we get
$\frac{\cot A-\cos A}{\cot A+\cos A}=\frac{\left(\frac{\cos A}{\sin A}-\cos A\right)}{\left(\frac{\cos A}{\sin A}+\cos A\right)}$
$=\frac{\left(\frac{\cos A-\cos A \sin A}{\sin A}\right)}{\left(\frac{\cos A+\cos A \sin A}{\sin A}\right)}$
On further solving by taking the reciprocal of the denominator, we get,
$\frac{\left(\frac{\cos A-\cos A \sin A}{\sin A}\right)}{\left(\frac{\cos A+\cos A \sin A}{\sin A}\right)}=\left(\frac{\cos A-\cos A \sin A}{\sin A}\right)\left(\frac{\sin A}{\cos A+\cos A \sin A}\right)$
$=\left(\frac{\cos A-\cos A \sin A}{\cos A+\cos A \sin A}\right)$
Now, taking $\cos A \sin A$ common from both the numerator and the denominator, we get
$\left(\frac{\cos A-\cos A \sin A}{\cos A+\cos A \sin A}\right)=\frac{\cos A \sin A\left(\frac{1}{\sin A}-1\right)}{\cos A \sin A\left(\frac{1}{\sin A}+1\right)}$
$=\frac{\left(\frac{1}{\sin A}-1\right)}{\left(\frac{1}{\sin A}+1\right)}$
$=\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}$ $\left(\right.$ Using $\left.\frac{1}{\sin \theta}=\operatorname{cosec} \theta\right)$
Hence proved.