Prove the following identities:
$\left|\begin{array}{ccc}a+x & y & z \\ x & a+y & z \\ x & y & a+z\end{array}\right|=a^{2}(a+x+y+z)$
LHS
$=\left|\begin{array}{ccc}a+x & y & z \\ x & a+y & z \\ x & y & a+z\end{array}\right|$
$=\left|\begin{array}{ccc}a+x+y+z & y & z \\ a+x+y+z & a+y & z \\ a+x+y+z & y & a+z\end{array}\right|$ $\left[\right.$ Applying $\left.C_{1} \rightarrow C_{1}+C_{2}+C_{3}\right]$
$=(a+x+y+z)\left|\begin{array}{ccc}1 & y & z \\ 1 & a+y & z \\ 1 & y & a+z\end{array}\right|$ [Taking $(a+x+y+z)$ common from $\left.C_{1}\right]$
$=(a+x+y+z)\left|\begin{array}{lll}1 & y & z \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right|$ [Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$ ]
$=(a+x+y+z) a^{2} \quad$ [Expanding along first column]
$=a^{2}(a+x+y+z)$
$=$ RHS
$\therefore\left|\begin{array}{ccc}a+x & y & z \\ x & a+y & z \\ x & y & a+z\end{array}\right|=a^{2}(a+x+y+z)$