Question:
Prove the following identities (1-17)
$(1+\tan \alpha \tan \beta)^{2}+(\tan \alpha-\tan \beta)^{2}=\sec ^{2} \alpha \sec ^{2} \beta$
Solution:
$(1+\tan \alpha \tan \beta)^{2}+(\tan \alpha-\tan \beta)^{2}=\sec ^{2} \alpha \sec ^{2} \beta$
$\mathrm{LHS}=(1+\tan \alpha \tan \beta)^{2}+(\tan \alpha-\tan \beta)^{2}$
$=1+\tan ^{2} \alpha \tan ^{2} \beta+2 \tan \alpha \tan \beta+\tan ^{2} \alpha+\tan ^{2} \beta-2 \tan \alpha \tan \beta$
$=1+\tan ^{2} \alpha \tan ^{2} \beta+\tan ^{2} \alpha+\tan ^{2} \beta$
$=\tan ^{2} \alpha\left(\tan ^{2} \beta+1\right)+1\left(1+\tan ^{2} \beta\right)$
$=\left(1+\tan ^{2} \beta\right)\left(1+\tan ^{2} \alpha\right)$
$=\sec ^{2} \alpha \cdot \sec ^{2} \beta$
$=\mathrm{RHS}$
Hence proved.