Question:
Prove the following identities (1-16)
$\sin ^{6} x+\cos ^{6} x=1-3 \sin ^{2} x \cos ^{2} x$
Solution:
$\mathrm{LHS}=\sin ^{6} x+\cos ^{6} x$
$=\left(\sin ^{2} x\right)^{3}+\left(\cos ^{2} x\right)^{3}$
$=\left(\sin ^{2} x+\cos ^{2} x\right)\left[\left(\sin ^{2} x\right)^{2}+\left(\cos ^{2} x\right)^{2}-\sin ^{2} x \cos ^{2} x\right]$
$\left[\because a^{3}+b^{3}=(a+b)\left(a^{2}+b^{2}-a b\right)\right]$
$=1 \times\left[\left(\sin ^{2} x+\cos ^{2} x\right)^{2}-2 \sin ^{2} x \cos ^{2} x-\sin ^{2} x \cos ^{2} x\right]$
$\left[\because \sin ^{2} x+\cos ^{2} x=1\right.$ and $\left.a^{2}+b^{2}=(a+b)^{2}-2 a b\right]$
$=1^{2}-3 \sin ^{2} x \cos ^{2} x$
$=1-3 \sin ^{2} x \cos ^{2} x$
$=\mathrm{RHS}$
Hence proved.