Question:
Prove the following identities (1-16)
$(\operatorname{cosec} x-\sin x)(\sec x-\cos x)(\tan x+\cot x)=1$
Solution:
$\mathrm{LHS}=(\operatorname{cosec} x-\sin x)(\sec x-\cos x)(\tan x+\cot x)$
$=\left(\frac{1}{\sin x}-\sin x\right)\left(\frac{1}{\cos x}-\cos x\right)\left(\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}\right)$
$=\left(\frac{1-\sin ^{2} x}{\sin x}\right)\left(\frac{1-\cos ^{2} x}{\cos x}\right)\left(\frac{\sin ^{2} x+\cos ^{2} x}{\cos x \sin x}\right)$
$=\left(\frac{\cos ^{2} x}{\sin x}\right)\left(\frac{\sin ^{2} x}{\cos x}\right)\left(\frac{1}{\cos x \sin x}\right)$
$=1$
$=\mathrm{RHS}$
Hence proved.