Question:
Prove the following identities (1-16)
$1-\frac{\sin ^{2} x}{1+\cot x}-\frac{\cos ^{2} x}{1+\tan x}=\sin x \cos x$
Solution:
$1-\frac{\sin ^{2} x}{1+\cot x}-\frac{\cos ^{2} x}{1+\tan x}=\sin x \cos x$
$\mathrm{LHS}=1-\frac{\sin ^{3} x}{\sin x+\cos x}-\frac{\cos ^{3} x}{\sin x+\cos x}$
$=\frac{\sin x+\cos x-\left(\sin ^{3} x+\cos ^{3} x\right)}{\sin x+\cos x}$
$=\frac{(\sin x+\cos x)\left(1-\sin ^{2} x-\cos ^{2} x+\sin x \cos x\right)}{\sin x+\cos x}$
$=\left(1-\sin ^{2} x-\cos ^{2} x+\sin x \cos x\right)$
$=(1-1+\sin x \cos x)$
$=\sin x \cos x$
= RHS
Hence proved.