Prove the following

Question:

If $|\overrightarrow{\mathrm{a}}|=2,|\overrightarrow{\mathrm{b}}|=5$ and $|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=8$, then $|\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}|$ is equa to :

  1. 6

  2. 4

  3. 3

  4. 5


Correct Option: 1

Solution:

$|\overrightarrow{\mathrm{a}}|=2,|\overrightarrow{\mathrm{b}}|=5$

$|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}|=|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \sin \theta=\pm 8$

$\sin \theta=\pm \frac{4}{5}$

$\therefore \vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$

$=10 \cdot\left(\pm \frac{3}{5}\right)=\pm 6$

$|\vec{a} \cdot \vec{b}|=6$

Leave a comment