Prove the following

Question:

Let, 

$T=\left\{x \mid \frac{x+5}{x-7}-5=\frac{4 x-40}{13-x}\right\}$

Is T an empty set? Justify your answer.

Solution:

According to the question,

$T=\left\{x \mid \frac{x+5}{x-7}-5=\frac{4 x-40}{13-x}\right\}$

To check whether T is an empty set or not,

We solve,

$\frac{x+5}{x-7}-5=\frac{4 x-40}{13-x}$

$\Rightarrow \frac{x+5-5(x-7)}{x-7}=\frac{4 x-40}{13-x}$

$\Rightarrow \frac{x+5-5 x+35}{x-7}=\frac{4 x-40}{13-x}$

$\Rightarrow \frac{-4 x+40}{x-7}=\frac{4 x-40}{13-x}$

$\Rightarrow \frac{-(4 x-40)}{x-7}=\frac{4 x-40}{13-x}$

⇒ -(4x – 40)(13 – x) = (4x – 40)(x – 7)

⇒ (4x – 40)(x – 7) + (4x – 40)(13 – x) = 0

⇒ (4x – 40)(x – 7 + 13 – x) = 0

⇒ 6(4x – 40) = 0

⇒ 24(x – 10) = 0

⇒ x – 10 = 0

⇒ x = 10

So, T = {10}

⇒ T is not an empty set

Leave a comment