Question:
If $\vec{x}$ and $\vec{y}$ be two non-zero vectors such that
$|\vec{x}+\vec{y}|=|\vec{x}|$ and $2 \vec{x}+\lambda \vec{y}$ is perpendicular to $\vec{y}$, then the value of $\lambda$ is_________.
Solution:
$\because|\vec{x}+\vec{y}|=|\vec{x}|$
Squaring both sides we get
$|\vec{x}|^{2}+2 \vec{x} \cdot \vec{y}+|\vec{y}|^{2}=|\vec{x}|^{2}$
$\Rightarrow 2 \vec{x} \cdot \vec{y}+\vec{y} \cdot \vec{y}=0$ $\ldots$ (i)
Also $2 \vec{x}+\lambda \vec{y}$ and $\vec{y}$ are perpendicular
$\therefore 2 \vec{x} \cdot \vec{y}+\lambda \vec{y} \cdot \vec{y}=0$ ...(ii)
Comparing (i) and (ii), $\lambda=1$