Prove the following

Question:

If $p(x)=x^{2}-4 x+3$, then evaluate $p(2)-p(-1)+p(1 / 2)$.

Solution:

Given,              $p(x)=x^{2}-4 x+3$

Now,                $p(2)=(2)^{2}-4 \times 2+3=4-8+3=-1$

                        $p(-1)=(-1)^{2}-4(-1)+3=1+4+3=8$

and                  $p\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^{2}-4 \times \frac{1}{2}+3$

                        $=\frac{1}{4}-2+3=\frac{1-8+12}{4}=\frac{5}{4}$

$\therefore$    $p(2)-p(-1)+p\left(\frac{1}{2}\right)=-1-8+\frac{5}{4}$

$=-9+\frac{5}{4}=\frac{-36+5}{4}=\frac{-31}{4}$

 

Leave a comment