Question:
For $\mathrm{x} \in \mathrm{R}$, let $[\mathrm{x}]$ denote the greatest integer $\leq \mathrm{x}$, then the sum of the series
$\left[-\frac{1}{3}\right]+\left[-\frac{1}{3}-\frac{1}{100}\right]+\left[-\frac{1}{3}-\frac{2}{100}\right]+\ldots \ldots+\left[-\frac{1}{3}-\frac{99}{100}\right]$
is
Correct Option: 2,
Solution:
$\underbrace{\left[-\frac{1}{3}\right]+\left[-\frac{1}{3}-\frac{1}{100}\right]+\ldots+\left[-\frac{1}{3}-\frac{66}{100}\right]}_{(-1) 67}$
$+\underbrace{\left[-\frac{1}{3}-\frac{67}{100}\right]+\ldots+\left[-\frac{1}{3}-\frac{99}{100}\right]}_{-2(33)}=-133$