Prove the following

Question:

Evaluate

$\sum_{n=1}^{13}\left(i^{n}+i^{n+1}\right)$, where $n \in N$

Solution:

According to the question,

We have,

$\sum_{n=1}^{13}\left(i^{n}+i^{n+1}\right)=\sum_{n=1}^{13}(1+i) i^{n}$

$=(1+i)\left(1+i^{2}+i^{3}+i^{4}+i^{5}+i^{6}+i^{7}+i^{8}+i^{9}+i^{10}+i^{11}+i^{12}+i^{13}\right)$

$=(1+i) \frac{i\left(i^{13}-1\right)}{i-1}$

$=(1+i) \frac{i(i-1)}{i-1}$

$=(1+i) i$

$=i+i^{2}$

 

$=i-1$

$\therefore \sum_{n=1}^{13}\left(i^{n}+i^{n+1}\right)=1-1$

Leave a comment