Prove the following

Question:

If $x / y$ is the additive inverse of $c / d$, then $(x / y)+(c / d)=0$

Solution:

True.

Let $x / y=1 / 2$ and its additive inverse $c / d=-1 / 2$

Then, $(x / y)+(c / d)$

$=1 / 2+(-1 / 2)$

$=1 / 2-1 / 2$

$=0$

Leave a comment