Let
$S_{n}(x)=\log _{a^{1 / 2}} x+\log _{a^{1 / 3}} x+\log _{a^{1 / 6}} x$
$+\log _{a^{1 / 1}} x+\log _{a^{1 / 18}} x+\log _{a^{1 / 27}} x+\ldots$
up to $\mathrm{n}$-terms, where $\mathrm{a}>1$. If $\mathrm{S}_{24}(\mathrm{x})=1093$ and
$\mathrm{S}_{12}(2 \mathrm{x})=265$, then value of a is equal to_______.
$\mathrm{S}_{\mathrm{n}}(\mathrm{x})=(2+3+6+11+18+27+\ldots \ldots+\mathrm{n}-$ terms $) \log _{\mathrm{a}} \mathrm{x}$
Let $\mathrm{S}_{1}=2+3+6+11+18+27+\ldots+\mathrm{T}_{\mathrm{n}}$
$\mathrm{S}_{1}=2+3+6+\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots+\mathrm{T}_{\mathrm{n}}$
$\mathrm{T}_{\mathrm{n}}=2+1+3+5+\ldots \ldots+\mathrm{n}$ terms
$\mathrm{T}_{\mathrm{n}}=2+(\mathrm{n}-1)^{2}$
$\mathrm{S}_{1}=\Sigma \mathrm{T}_{\mathrm{n}}=2 \mathrm{n}+\frac{(\mathrm{n}-1) \mathrm{n}(2 \mathrm{n}-1)}{6}$
$\Rightarrow S_{n}(x)=\left(2 n+\frac{n(n-1)(2 n-1)}{6}\right) \log _{a} x$
$\mathrm{S}_{24}(\mathrm{x})=1093 \quad$ (Given )
$\log _{\mathrm{a}} \mathrm{x}\left(48+\frac{23.24 .47}{6}\right)=1093$
$\log _{\mathrm{a}} \mathrm{x}=\frac{1}{4} \quad \ldots(1)$
$\mathrm{S}_{12}(2 \mathrm{x})=265$
$\mathrm{S}_{12}(2 \mathrm{x})=265$
$\log _{a} 2 x=\frac{1}{2} \ldots$ (2)
$(2)-(1)$
$\log _{a} 2 x-\log _{a} x=\frac{1}{4}$
$\log _{a} 2=\frac{1}{4} \Rightarrow a=16$