Prove the following

Question:

Let

$S_{n}(x)=\log _{a^{1 / 2}} x+\log _{a^{1 / 3}} x+\log _{a^{1 / 6}} x$

$+\log _{a^{1 / 1}} x+\log _{a^{1 / 18}} x+\log _{a^{1 / 27}} x+\ldots$

up to $\mathrm{n}$-terms, where $\mathrm{a}>1$. If $\mathrm{S}_{24}(\mathrm{x})=1093$ and

$\mathrm{S}_{12}(2 \mathrm{x})=265$, then value of a is equal to_______.

Solution:

$\mathrm{S}_{\mathrm{n}}(\mathrm{x})=(2+3+6+11+18+27+\ldots \ldots+\mathrm{n}-$ terms $) \log _{\mathrm{a}} \mathrm{x}$

Let $\mathrm{S}_{1}=2+3+6+11+18+27+\ldots+\mathrm{T}_{\mathrm{n}}$

$\mathrm{S}_{1}=2+3+6+\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots+\mathrm{T}_{\mathrm{n}}$

$\mathrm{T}_{\mathrm{n}}=2+1+3+5+\ldots \ldots+\mathrm{n}$ terms

$\mathrm{T}_{\mathrm{n}}=2+(\mathrm{n}-1)^{2}$

$\mathrm{S}_{1}=\Sigma \mathrm{T}_{\mathrm{n}}=2 \mathrm{n}+\frac{(\mathrm{n}-1) \mathrm{n}(2 \mathrm{n}-1)}{6}$

$\Rightarrow S_{n}(x)=\left(2 n+\frac{n(n-1)(2 n-1)}{6}\right) \log _{a} x$

$\mathrm{S}_{24}(\mathrm{x})=1093 \quad$ (Given )

$\log _{\mathrm{a}} \mathrm{x}\left(48+\frac{23.24 .47}{6}\right)=1093$

$\log _{\mathrm{a}} \mathrm{x}=\frac{1}{4} \quad \ldots(1)$

$\mathrm{S}_{12}(2 \mathrm{x})=265$

$\mathrm{S}_{12}(2 \mathrm{x})=265$

$\log _{a} 2 x=\frac{1}{2} \ldots$ (2)

$(2)-(1)$

$\log _{a} 2 x-\log _{a} x=\frac{1}{4}$

$\log _{a} 2=\frac{1}{4} \Rightarrow a=16$

Leave a comment