Prove the following

Question:

If $\frac{x}{y}+\frac{y}{x}=-1$ (where $x, y \neq 0$ ), then the value of $x^{3}-y^{3}$ is

(a) 1 -

(b) $-1$

(c) 0

(d) $\frac{1}{2}$

Solution:

(c)

Given,                      $\frac{x}{y}+\frac{y}{x}=-1$

$\Rightarrow$         $\frac{x^{2}+y^{2}}{x y}=-1$

$\Rightarrow$         $x^{2}+y^{2}=-x y$                

$\Rightarrow$         $x^{2}+y^{2}+x y=0$           $\ldots($ i)

Now,                        $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$

                                 [using identity, $\left.a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)\right]$

$=(x-y) \times 0=0$                [from Eq. (i)]

 

Leave a comment