Prove the following

Question:

If $\sin \theta-\cos \theta=0$, then the value of $\left(\sin ^{4} \theta+\cos ^{4} \theta\right)$ is

(a) 1

(b) $\frac{3}{4}$

(c) $\frac{1}{2}$

(d) $\frac{1}{4}$

Solution:

(c) Given, $\sin \theta-\cos \theta=0$

$\Rightarrow$ $\sin \theta=\cos \theta \Rightarrow \frac{\sin \theta}{\cos \theta}=1$

$\Rightarrow$ $\tan \theta=1$ $\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right.$ and $\left.\tan 45^{\circ}=1\right]$

$\Rightarrow$ $\tan \theta=\tan 45^{\circ}$ 

$\therefore$ $\theta=45^{\circ}$

Now, $\sin ^{4} \theta+\cos ^{4} \theta=\sin ^{4} 45^{\circ}+\cos ^{4} 45^{\circ}$

$=\left(\frac{1}{\sqrt{2}}\right)^{4}+\left(\frac{1}{\sqrt{2}}\right)^{4}$ $\left[\because \sin 45^{\circ}=\cos 45^{\circ}=\frac{1}{\sqrt{2}}\right]$

$=\frac{1}{4}+\frac{1}{4}=\frac{2}{4}=\frac{1}{2}$

Leave a comment