Prove the following :
(i) $\sin \theta \sin \left(90^{\circ}-\theta\right)-\cos \theta \cos \left(90^{\circ}-\theta\right)=0$
(ii) $\frac{\cos \left(90^{\circ}-\theta\right) \sec \left(90^{\circ}-\theta\right) \tan \theta}{\operatorname{cosec}\left(90^{\circ}-\theta\right) \sin \left(90^{\circ}-\theta\right) \cot \left(90^{\circ}-\theta\right)}+\frac{\tan \left(90^{\circ}-\theta\right)}{\cot \theta}=2$
(iii) $\frac{\tan \left(90^{\circ}-A\right) \cot A}{\operatorname{cosec}^{2} A}-\cos ^{2} A=0$
(iv) $\frac{\cos \left(90^{\circ}-A\right) \sin \left(90^{\circ}-A\right)}{\tan \left(90^{\circ}-A\right)}=\sin ^{2} A$
(v) $\sin \left(50^{\circ}-\theta\right)-\cos \left(40^{\circ}-\theta\right)+\tan 1^{\circ} \tan 10^{\circ} \tan 20^{\circ} \tan 70^{\circ} \tan 80^{\circ} \tan 89^{\circ}=1$
(i) We have to prove: $\sin \theta \cdot \sin \left(90^{\circ}-\theta\right)-\cos \theta \cdot \cos \left(90^{\circ}-\theta\right)=0$
Left hand side
$=\sin \theta \cdot \sin \left(90^{\circ}-\theta\right)-\cos \theta \cdot \cos \left(90^{\circ}-\theta\right)$
$=\sin \theta \cdot \cos \theta-\cos \theta \cdot \sin \theta$
$=\sin \theta(\cos \theta-\cos \theta)$
$=0$
=Right hand side
Proved
(ii) We have to prove: $\frac{\cos \left(90^{\circ}-\theta\right) \cdot \sec \left(90^{-}-\theta\right) \cdot \tan \theta}{\operatorname{cosec}\left(90^{-}-\theta\right) \cdot \sin \left(90^{\circ}-\theta\right) \cdot \cot \left(90^{\circ}-\theta\right)}+\frac{\tan \left(90^{\circ}-\theta\right)}{\cot \theta}=2$
Left hand side
$=\frac{\cos \left(90^{\circ}-\theta\right) \cdot \sec \left(90^{\circ}-\theta\right) \cdot \tan \theta}{\operatorname{cosec}\left(90^{-}-\theta\right) \cdot \sin \left(90^{-}-\theta\right) \cdot \cot \left(90^{\circ}-\theta\right)}+\frac{\tan \left(90^{\circ}-\theta\right)}{\cot \theta}$
$=\frac{\sin \theta \cdot \operatorname{cosec} \theta \cdot \tan \theta}{\sec \theta \cdot \cos \theta \cdot \tan \theta}+\frac{\cot \theta}{\cot \theta}$
$=\frac{\tan \theta}{\tan \theta}+\frac{\cot \theta}{\cot \theta}$
$=1+1$
$=2$
= right hand side
Proved
(iii) We have to prove: $\frac{\tan \left(90^{\circ}-\mathrm{A}\right) \cot \mathrm{A}}{\operatorname{cosec}^{2} \mathrm{~A}}-\cos ^{2} A=0$
Left hand side
$=\frac{\tan \left(90^{\circ}-A\right) \cot A}{\operatorname{cosec}^{2} A}-\cos ^{2} A$
$=\frac{\cot A \cdot \cot A}{\operatorname{cosec}^{2} A}-\cos ^{2} A$
$=\frac{\cot ^{2} A}{\operatorname{cosec}^{2} A}-\cos ^{2} A$
$=\frac{\cos ^{2} A \cdot \sin ^{2} A}{\sin ^{2} A}-\cos ^{2} A$
$=\cos ^{2} A-\cos ^{2} A$
$=0$
= right hand side
Proved
(iv) We have to prove: $\frac{\cos \left(90^{\circ}-A\right) \cdot \sin \left(90^{\circ}-A\right)}{\tan \left(90^{\circ}-A\right)}=\sin ^{2} A$
Left hand side
$=\frac{\cos \left(90^{\circ}-A\right) \cdot \sin \left(90^{\circ}-A\right)}{\tan \left(90^{\circ}-A\right)}$
$=\frac{\sin A \cdot \cos A}{\cot A}=\sin ^{2} A$
$=\frac{\sin A \cdot \cos A \cdot \sin A}{\cos A}$
$=\sin ^{2} A$
= Right hand side
Proved
(v) We have to prove: $\sin \left(50^{\circ}+\theta\right)-\cos \left(40^{\circ}-\theta\right)+\tan 1^{\circ} \tan 10^{\circ} \tan 70^{\prime \prime} \tan 80^{\circ} \tan 89=1$
Left hand side
$=\sin \left(50^{\circ}+\theta\right)-\cos \left(40^{\circ}-\theta\right)+\tan 1^{\circ} \tan 10^{\circ} \tan 20^{\circ} \tan 70^{\circ} \tan 80^{\circ} \tan 89^{\circ}$
$=\cos \left[90^{\circ}-\left(50^{\circ}+\theta\right)\right]-\cos \left(40^{\circ}-\theta\right)+\tan \left(90^{\circ}-89^{\circ}\right) \tan \left(90^{\circ}-80^{\circ}\right) \tan \left(90^{\circ}-70^{\circ}\right) \tan 70^{\circ} \tan 80^{\circ} \tan 89^{\circ}$
$=\cos \left(40^{\circ}-\theta\right)-\cos \left(40^{\circ}-\theta\right)+\cot 89^{\circ} \cdot \cot 80^{\circ} \cdot \cot 70^{\circ} \cdot \tan 70^{\circ} \cdot \tan 80^{\circ} \cdot \tan 89^{\circ}$
$=0+\left(\tan 89^{\circ} \cdot \cot 89^{\circ}\right)\left(\tan 80^{\circ} \cdot \cot 80^{\circ}\right)\left(\tan 70^{\circ} \cdot \cot 70^{\circ}\right)$
Since $\tan \theta \cdot \cot \theta=1$. So
$=1 \times 1 \times 1$
$=1$
=Right hand side
Proved