Question:
If $\cos ^{-1}\left(\frac{2}{3 x}\right)+\cos ^{-1}\left(\frac{3}{4 x}\right)=\frac{\pi}{2}\left(x>\frac{3}{4}\right)$
then $x$ is equal to:
Correct Option: 1
Solution:
$\cos ^{-1}\left(\frac{2}{3 x}\right)+\cos ^{-1}\left(\frac{3}{4 x}\right)=\frac{\pi}{2}\left(x>\frac{3}{4}\right)$
$\cos ^{-1}\left(\frac{3}{4 x}\right)=\frac{\pi}{2}-\cos ^{-1}\left(\frac{2}{3 x}\right)$
$\cos ^{-1}\left(\frac{3}{4 x}\right)=\sin ^{-1}\left(\frac{2}{3 x}\right)$
$\cos \left(\cos ^{-1}\left(\frac{3}{4 x}\right)\right)=\cos \left(\sin ^{-1} \frac{2}{3 x}\right)$
$\frac{3}{4 x}=\frac{\sqrt{9 x^{2}-4}}{3 x}$
$\frac{81}{16}+4=9 x^{2}$
$x^{2}=\frac{145}{16 \times 9} \Rightarrow x=\frac{\sqrt{145}}{12}$