Prove the following

Question:

Let $*, \square \in\{\wedge, \vee\}$ be such that the Boolean expression $(p * \sim q) \Rightarrow(p \square q)$ is a tautology. Then :

  1. $*=\vee, \square=\vee$

  2. $*=\wedge, \square=\wedge$

  3. $*=\wedge, \square=\vee$

  4. $*=\vee, \square=\wedge$


Correct Option: , 3

Solution:

$(\mathrm{p} \wedge \sim \mathrm{q}) \rightarrow(\mathrm{p} \vee \mathrm{q})$ is tautology

Leave a comment