Prove the following

Question:

If $\alpha, \beta \in \mathrm{R}$ are such that $1-2 \mathrm{i}$ (here $\mathrm{i}^{2}=-1$ ) is a root of $\mathrm{z}^{2}+\alpha \mathrm{z}+\beta=0$, then $(\alpha-\beta)$ is equal

to:

  1. (1) 7

  2. (2) $-3$

  3. (3) 3

  4. (4) $-7$


Correct Option: , 4

Solution:

$(1-2 i)^{2}+\alpha(1-2 i)+\beta=0$

$1-4-4 i+\alpha-2 i \alpha+\beta=0$

$(\alpha+\beta-3)-i(4+2 \alpha)=0$

$\alpha+\beta-3=0 \quad \& 4+2 \alpha=0$

$\alpha=-2 \quad \beta=5$

$\alpha-\beta=-7$

Leave a comment