$\lim _{x \rightarrow 0} \frac{\sin ^{2} 2 x}{\sin ^{2} 4 x}$
Given $\lim _{x \rightarrow 0} \frac{\sin ^{2} 2 x}{\sin ^{2} 4 x}$
Multiply and divide both numerator and denominator by $4 x^{2} / 16 x^{2}$ then we get
$\Rightarrow \lim _{x \rightarrow 0} \frac{\sin ^{2} 2 x}{\sin ^{2} 4 x}=\lim _{x \rightarrow 0} \frac{\left(\sin ^{2} 2 x\right) / 4 x^{2}}{\left(\sin ^{2} 4 x\right) / 16 x^{2}} \times \frac{4 x^{2}}{16 x^{2}}$
On simplifying
$\Rightarrow \lim _{x \rightarrow 0}\left[\frac{\left(\frac{\sin 2 x}{2 x}\right)^{2}}{\left(\frac{\sin 4 x}{4 x}\right)^{2}}\right] \times \frac{4}{16}$
Now as $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
$\lim _{x \rightarrow 0}\left[\frac{\left(\frac{\sin 2 x}{2 x}\right)^{2}}{\left(\frac{\sin 4 x}{4 x}\right)^{2}}\right] \times \frac{4}{16}=\frac{4}{16}$
$\lim _{x \rightarrow 0} \frac{\sin ^{2} 2 x}{\sin ^{2} 4 x}=\frac{4}{16}$
$=1 / 4$