Prove the following

Question:

$\frac{1}{\sqrt{9}-\sqrt{8}}$ is equal to

(a) $\frac{1}{2}(3-2 \sqrt{2})$

(b) $\frac{1}{3+2 \sqrt{2}}$

(c) $3-2 \sqrt{2}$

(d) $3+2 \sqrt{2}$

Solution:

$\frac{1}{\sqrt{9}-\sqrt{8}}=\frac{1}{3-2 \sqrt{2}}=\frac{1}{3-2 \sqrt{2}} \cdot \frac{3+2 \sqrt{2}}{3+2 \sqrt{2}}$          $[\because \sqrt{8}=\sqrt{2 \times 2 \times 2}=2 \sqrt{2}]$

[multiplying numerator and denominator by $3+2 \sqrt{2}]$

$=\frac{3+2 \sqrt{2}}{9-(2 \sqrt{2})^{2}}$       [using identity $(a-b)(a+b)=a^{2}-b^{2}$ ]

$=\frac{3+2 \sqrt{2}}{9-8}=3+2 \sqrt{2}$

Leave a comment