Question:
Prove that the sum of the angles of a quadrilateral is 360°.
Solution:
Let ABCD be a quadrilateral.
Join A and C.
Now, we know that the sum of the angles of a triangle is 180°.
For $\triangle A B C$.
$\angle 2+\angle 4+\angle B=180^{\circ} \quad \ldots$ (1)
For $\triangle A D C:$
$\angle 1+\angle 3+\angle D=180^{\circ} \quad \cdots(2)$
Adding (1) and (2):
$(\angle 1+\angle 2+\angle 3+\angle 4)+\angle B+\angle D=360^{\circ}$
or $\angle A+\angle B+\angle C+\angle D=360^{\circ}$
Hence, the sum of all the angles of a quadrilateral is 360°.