Prove that the points (7, 10), (−2, 5) and (3, −4) are the vertices of an isosceles right triangle. [CBSE 2013]
Let the given points be A(7, 10), B(−2, 5) and C(3, −4).
Using distance formula, we have
$\mathrm{AB}=\sqrt{(-2-7)^{2}+(5-10)^{2}}=\sqrt{(-9)^{2}+(-5)^{2}}=\sqrt{81+25}=\sqrt{106}$ units
$\mathrm{BC}=\sqrt{[3-(-2)]^{2}+(-4-5)^{2}}=\sqrt{5^{2}+(-9)^{2}}=\sqrt{25+81}=\sqrt{106}$ units
$\mathrm{CA}=\sqrt{(3-7)^{2}+(-4-10)^{2}}=\sqrt{(-4)^{2}+(-14)^{2}}=\sqrt{16+196}=\sqrt{212}$ units
Thus, $\mathrm{AB}=\mathrm{BC}=\sqrt{106}$ units
∴ ∆ABC is an isosceles triangle.
Also,
AB2 + BC2 = 106 + 106 = 212
and CA2 = 212
∴ AB2 + BC2 = CA2
So, ∆ABC is right angled at B. (Converse of Pythagoras theorem)
Hence, the given points are the vertices of an isosceles right triangle.