Prove that the points $(2 a, 4 a),(2 a, 6 a)$ and $(2 a+\sqrt{3} a, 5 a)$ are the vertices of an equilateral triangle.
The distance $d$ between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by the formula
$d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$
In an equilateral triangle all the sides have equal length.
Here the three points are $A(2 a, 4 a), B(2 a, 6 a)$ and $C(2 a+a \sqrt{3}, 5 a)$.
Let us now find out the lengths of all the three sides of the given triangle.
$A B=\sqrt{(2 a-2 a)^{2}+(4 a-6 a)^{2}}$
$=\sqrt{(0)^{2}+(-2 a)^{2}}$
$=\sqrt{0+4 a^{2}}$
$A B=2 a$
$B C=\sqrt{(2 a-2 a-a \sqrt{3})^{2}+(6 a-5 a)^{2}}$
$=\sqrt{(-a \sqrt{3})^{2}+(a)^{2}}$
$=\sqrt{3 a^{2}+a^{2}}$
$=\sqrt{4 a^{2}}$
$B C=2 a$
$A C=\sqrt{(2 a-2 a-a \sqrt{3})^{2}+(4 a-5 a)^{2}}$
$=\sqrt{(-a \sqrt{3})^{2}+(-a)^{2}}$
$=\sqrt{3 a^{2}+a^{2}}$
$=\sqrt{4 a^{2}}$
$A C=2 a$
Since all the three sides have equal lengths the triangle has to be an equilateral triangle.