Prove that the line segments joining the middle points

Question:

Prove that the line segments joining the middle points of the sides of a triangle divide it into four congruent triangles.

 

Solution:

 ∆ABC is shown below.  D, E and F are the midpoints of sides AB, BC and CA, respectively.

As, D and  E are the mid points of sides AB, and BC of ∆ ABC.
∴ DE ∣∣ AC   (By midpoint theorem) 
Similarly, DF ​∣∣ BC and EF ​∣∣ AB.
Therefore, ADEF, BDFE and DFCE are all parallelograms.
Now, DE is the diagonal of the parallelogram BDFE.
∴ ​∆BDE ≅ ​∆FED
Simiilarly, DF is the ​diagonal of the parallelogram ADEF.

∴ ∆DAF ≅ ∆FED
And, EF is the ​diagonal of the parallelogram DFCE.
∴ ∆EFC ≅ ∆FED
So, all the four triangles are congruent.
 

Leave a comment