Question:
Prove that the function $f(x)=\log _{a} x$ is increasing on $(0, \infty)$ if $a>1$ and decresing on $(0, \infty)$, if $0
Solution:
case I
When $a>1$
let $x_{1}, x_{2} \in(0, \infty)$
We have, $x_{1} $\Rightarrow \log _{\mathrm{e}} \mathrm{x}_{1}<\log _{\mathrm{e}} \mathrm{x}_{2}$ $\Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right)<\mathrm{f}\left(\mathrm{x}_{2}\right)$ So, $f(x)$ is increasing in $(0, \infty)$ case II