Prove that the function $f(x)=x^{3}-6 x^{2}+12 x-18$ is increasing on $R$.
Given:- Function $f(x)=x^{3}-6 x^{2}+12 x-18$
Theorem:- Let $f$ be a differentiable real function defined on an open interval $(a, b)$.
(i) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then $f(x)$ is increasing on $(a, b)$
(ii) If $f^{\prime}(x)<0$ for all $x \in(a, b)$, then $f(x)$ is decreasing on $(a, b)$
Algorithm:-
(i) Obtain the function and put it equal to $f(x)$
(ii) Find $f^{\prime}(x)$
(iii) Put $\mathrm{f}^{\prime}(\mathrm{x})>0$ and solve this inequation.
For the value of $x$ obtained in (ii) $f(x)$ is increasing and for remaining points in its domain, it is decreasing.
Here we have,
$f(x)=x^{3}-6 x^{2}+12 x-18$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{3}-6 \mathrm{x}^{2}+12 \mathrm{x}-18\right)$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=3 \mathrm{x}^{2}-12 \mathrm{x}+12$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=3\left(\mathrm{x}^{2}-4 \mathrm{x}+4\right)$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=3(\mathrm{x}-2)^{2}$
as given
$X \in R$
$\Rightarrow(x-2)^{2}>0$
$\Rightarrow 3(x-2)^{2}>0$
$\Rightarrow f^{\prime}(x)>0$
Hence, condition for $f(x)$ to be increasing
Thus $f(x)$ is increasing on interval $x \in R$