Prove that the diagonals of a rhombus bisect each other at right angles.
Rhombus is a parallelogram.
Consider:
$\Delta A O B$ and $\Delta C O D$
$\angle O A B=\angle O C D \quad$ (alternate angle)
$\angle O D C=\angle O B A \quad$ (alternate angle)
$\angle D O C=\angle A O B \quad$ (vertically opposite angles)
$\Delta A O B \cong C O B$
$\therefore A O=C O$
$O B=O D$
Therefore, the diagonals bisects at O.
Now, let us prove that the diagonals intersect each other at right angles.
Consider $\Delta C O D$ and $\Delta C O B$ :
$C D=C B \quad$ (all sides of a rhombus are equal)
$C O=C O \quad$ (common side)
$O D=O B \quad(p$ oint $O$ bisects $B D)$
$\therefore \triangle C O D \cong \Delta C O B$
$\therefore \angle C O D=\angle C O B$ (corresponding parts of congruent triangles)'
Further, $\angle C O D+\angle C O B=180^{\circ} \quad(l$ inear pair $)$
$\therefore \angle C O D=\angle C O B=90^{\circ}$
It is proved that the diagonals of a rhombus are perpendicular bisectors of each other.