Prove that the curves $x y=4$ and $x^{2}+y^{2}=8$ touch each other.
Given:
Curves $x y=4$ .....(1)
$\& x^{2}+y^{2}=8 \ldots(2)$
Solving $(1) \&(2)$, we get
$\Rightarrow x y=4$
$\Rightarrow x=\frac{4}{y}$
Substituting $x=\frac{4}{y}$ in $x^{2}+y^{2}=8$, we get,
$\Rightarrow\left(\frac{4}{y}\right)^{2}+y^{2}=8$
$\Rightarrow \frac{16}{y^{2}}+y^{2}=8$
$\Rightarrow 16+y^{4}=8 y^{2}$
$\Rightarrow y^{4}-8 y^{2}+16=0$
We will use factorization method to solve the above equation
$\Rightarrow y^{4}-4 y^{2}-4 y^{2}+16=0$
$\Rightarrow y^{2}\left(y^{2}-4\right)-4\left(y^{2}-4\right)=0$
$\Rightarrow\left(y^{2}-4\right)\left(y^{2}-4\right)=0$
$\Rightarrow y^{2}-4=0$
$\Rightarrow y^{2}=4$
$\Rightarrow y=\pm 2$
Substituting $y=\pm 2$ in $x=\frac{4}{y}$, we get,
$\Rightarrow x=\frac{4}{+2}$
$\Rightarrow x=\pm 2$
$\therefore$ The point of intersection of two curves $(2,2) \&$
$(-2,-2)$
First curve $x y=4$
$\Rightarrow 1 \times y+x \cdot \frac{d y}{d x}=0$
$\Rightarrow x \cdot \frac{d y}{d x}=-y$
$\Rightarrow m_{1}=\frac{-y}{x} \ldots(3)$
Second curve is $x^{2}+y^{2}=8$
Differentiating above w.r.t $x$,
$\Rightarrow 2 x+2 y \cdot \frac{d y}{d x}=0$
$\Rightarrow y \cdot \frac{d y}{d x}=-x$
$\Rightarrow m_{2}=\frac{d y}{d x}=\frac{-x}{y} \ldots(4)$
At $(2,2)$, we have,
$m_{1}=\frac{-y}{x}$
$\Rightarrow \frac{-2}{2}$
$m_{1}=-1$
At $(2,2)$, we have,
$\Rightarrow m_{2}=\frac{-x}{y}$
$\Rightarrow \frac{-2}{2}$
$\Rightarrow m_{2}=-1$
Clearly, $m_{1}=m_{2}=-1$ at $(2,2)$
So, given curve touch each other at $(2,2)$