Prove that the coefficient of xn in the expansion of (1 + x)2n is twice the coefficient of xn in the expansion of (1 + x)2n–1 .
Prove that the coefinicient of $x^{n}$ in the expansion of $(1+x)^{2 n}$ is twice the coefficient of $x^{x}$ in the expansion of $(1+x)^{2 n-1}$
It is known that $(r+1)^{\text {th }}$ term $_{,}\left(T_{r+1}\right)$, in the binomial expansion of $(a+b)^{n}$ is given by $T_{r+1}={ }^{n} C_{r} a^{n-t} b^{t}$.
Assuming that $x^{n}$ occurs in the $(r+1)^{\text {th }}$ term of the expansion of $(1+x)^{2 n}$, we obtain
$\mathrm{T}_{\mathrm{r}+1}={ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{r}}(1)^{2 \mathrm{n}-\mathrm{t}}(\mathrm{x})^{\mathrm{r}}={ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{r}}(\mathrm{x})^{\mathrm{r}}$
Comparing the indices of $x$ in $x^{n}$ and in $T_{r+1}$, we obtain
$r=n$
Therefore, the coefficient of $x^{n}$ in the expansion of $(1+x)^{2 n}$ is
${ }^{2 n} C_{n}=\frac{(2 n) !}{n !(2 n-n) !}=\frac{(2 n) !}{n ! n !}=\frac{(2 n) !}{(n !)^{2}}$ (1)
Assuming that $x^{n}$ occurs in the $(k+1)^{\text {th }}$ term of the expansion $(1+x)^{2 n-1}$, we obtain
$T_{k+1}={ }^{2 n-1} C_{k}(1)^{2 n-1-k}(x)^{k}={ }^{2 n-1} C_{k}(x)^{k}$
Comparing the indices of $x$ in $x^{n}$ and $T_{k+1}$, we obtain
$k=n$
Therefore, the coefficient of $x^{n}$ in the expansion of $(1+x)^{2 n-1}$ is
${ }^{2 n-1} C_{n}=\frac{(2 n-1) !}{n !(2 n-1-n) !}=\frac{(2 n-1) !}{n !(n-1) !}$
$=\frac{2 n \cdot(2 n-1) !}{2 n \cdot n !(n-1) !}=\frac{(2 n) !}{2 \cdot n ! n !}=\frac{1}{2}\left[\frac{(2 n) !}{(n !)^{2}}\right]$
From (1) and (2), it is observed that
$\frac{1}{2}\left({ }^{2 n} C_{n}\right)={ }^{2 n-1} C_{n}$
$\Rightarrow^{2 n} C_{n}=2\left({ }^{2 n-1} C_{n}\right)$
Therefore, the coefficient of $x^{n}$ in the expansion of $(1+x)^{2 n}$ is twice the coefficient of $x^{n}$ in the expansion of $(1+x)^{2 n-1}$.
Hence, proved.