Prove that the centres of the three circles $x^{2}+y^{2}-4 x-6 y-12=0, x^{2}+y^{2}+$ $2 x+4 y-5=0$ and $x^{2}+y^{2}-10 x-16 y+7=0$ are collinear.
Given,
$x^{2}+y^{2}-4 x-6 y-12=0$
centre $\left(-g_{1},-f_{1}\right)=(2,3)$
$x^{2}+y^{2}+2 x+4 y-5=0$
centre $\left(-g_{2},-f_{2}\right)=(-1,-2)$
$x^{2}+y^{2}-10 x-16 y+7=0$
centre $\left(-g_{3},-f_{3}\right)=(5,8)$
to prove that the centres are collinear,
$\left|\begin{array}{lll}\mathrm{x}_{1} & \mathrm{y}_{1} & 1 \\ \mathrm{x}_{2} & \mathrm{y}_{2} & 1 \\ \mathrm{x}_{3} & \mathrm{y}_{3} & 1\end{array}\right|=0$
Where $x_{1}, y_{1}$ are the coordinates of the ist centre and so on.
$\Rightarrow\left|\begin{array}{ccc}2 & 3 & 1 \\ -1 & -2 & 1 \\ 5 & 8 & 1\end{array}\right|$
$=2(-2-8)-3(-1-5)+1(-8+10)$
$=-20+18+2=0$
The centres are collinear