Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line-segment joining the points of contact at the centre.
Let PA and PB be two tangents drawn from an external point P to a circle with centre O.
Now, in right $\Delta \mathrm{OAP}$ and right $\Delta \mathrm{OBP}$, we have
$\mathrm{PA}=\mathrm{PB}$ [Tangents to circle from an external point]
$\mathrm{OA}=\mathrm{OB}$ [Radii of the same circle]
OP = OP [Common]
$\Delta \mathrm{OAP} \cong \Delta \mathrm{OBP} \quad[$ By SSS congruency $]$
$\therefore \angle \mathrm{OPA}=\angle \mathrm{OPB} \quad[$ By C.P.C.T. $]$
and $\angle \mathrm{AOP}=\angle \mathrm{BOP}$
$\Rightarrow \angle \mathrm{APB}=2 \angle \mathrm{OPA}$ and $\angle \mathrm{AOB}=2 \angle \mathrm{AOP}$
But $\angle A O P=90^{\circ}-\angle O P A$
$\Rightarrow 2 \angle \mathrm{AOP}=180^{\circ}-2 \angle \mathrm{OPA}$
$\Rightarrow \angle A O B=180^{\circ}-\angle A P B$
$\Rightarrow \angle \mathrm{AOB}+\angle \mathrm{APB}=180^{\circ}($ Proved $)$