Prove that $\sin 3 x+\sin 2 x-\sin x=4 \sin x \cos \frac{x}{2} \cos \frac{3 x}{2}$
LHS $=\sin 3 x+\sin 2 x-\sin x$
$=\sin 3 x+2 \sin \left(\frac{2 x-x}{2}\right) \cos \left(\frac{2 x+x}{2}\right) \quad\left[\because \sin A-\sin B=2 \sin \left(\frac{A-B}{2}\right) \cos \left(\frac{A+B}{2}\right)\right]$
$=\sin 3 x+2 \sin \left(\frac{x}{2}\right) \cos \left(\frac{3 x}{2}\right)$
$=2 \sin \left(\frac{3 x}{2}\right) \cos \left(\frac{3 x}{2}\right)+2 \sin \left(\frac{3 x}{2}\right) \cos \frac{x}{2}$ $[\because \sin 2 A=2 \sin A \cos A]$
$=2 \cos \left(\frac{3 x}{2}\right)\left[\sin \left(\frac{3 x}{2}\right) \cos \left(\frac{x}{2}\right)\right]$
$=2 \cos \left(\frac{3 x}{2}\right)\left[2 \sin \left(\frac{\frac{3 x}{2}+\frac{x}{2}}{2}\right) \cos \left(\frac{\frac{3 x}{2}-\frac{x}{2}}{2}\right)\right] \quad\left[\because \sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)\right]$
$=2 \cos \left(\frac{3 x}{2}\right)\left[2 \sin (x) \cos \left(\frac{x}{2}\right)\right]$
$=4 \sin (x) \cos \left(\frac{x}{2}\right) \cos \left(\frac{3 x}{2}\right)=$ RHS
Hence proved.