Prove that in a triangle if the square of one side is equal to the sum of the squares of the other two side then the angle opposite to the first side is a right angle.
Given: if square of one side is equal to the sum of the squares of the other two sides, then we have to prove that the angle opposite the first side is a right angle.
Here, we are given a triangle ABC with. We need to prove that.
Now, we construct a triangle PQR right angled at Q such that and .
We have the following diagram.
Now, in, we have
$\mathrm{PR}^{2}=\mathrm{PQ}^{2}+\mathrm{QR}^{2}$
$\Rightarrow \mathrm{PR}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2} \ldots \ldots(1)$
But, it is given that
$\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2} \ldots \ldots(2)$
From equations (1) and (2), we get
$\mathrm{AC}^{2}=\mathrm{PR}^{2}$
$\Rightarrow \mathrm{AC}=\mathrm{PR} \ldots \ldots(3)$
$\mathrm{AC}^{2}=\mathrm{PR}^{2}$
$\Rightarrow \mathrm{AC}=\mathrm{PR} \ldots \ldots(3)$
From the above analysis in and, we have
$\mathrm{AB}=\mathrm{PQ}$
$\mathrm{BC}=\mathrm{QR}$
$\mathrm{AC}=\mathrm{PR}$
$\Rightarrow \triangle \mathrm{ABC}-\triangle \mathrm{PQR}$
$\Rightarrow \angle \mathrm{B}=\angle \mathrm{Q}$
Since $\angle \mathrm{Q}=90^{\circ}$, therefore $\angle \mathrm{B}=90^{\circ}$
Hence, $\angle \mathrm{B}=90^{\circ}$