Prove that in a triangle, other than an equilateral triangle, angle opposite the longest side is greater than 2/3 of a right angle.
Consider $\triangle A B C$ in which $B C$ is the longest side.
To prove $\angle A=\frac{2}{3}$ right angle
Proof $\ln \triangle A B C, \quad B C>A B$.
[consider $B C$ is the largest side]
$\Rightarrow \quad \angle A>\angle C \quad \ldots(i)$
[angle opposite the longest side is greatest]
and $\quad B C>A C$
$\Rightarrow \quad \angle A>\angle B .$.....(ii)
[angle opposite the longest side is greatest]
On adding Eqs. (i) and (ii), we get
$2 \angle A>\angle B+\angle C$
$\Rightarrow \quad 2 \angle A+\angle A>\angle A+\angle B+\angle C \quad$ [adding $\angle A$ both sides]
$\Rightarrow \quad 3 \angle A>\angle A+\angle B+\angle C$
$\Rightarrow$ $3 \angle A>180^{\circ}$ [sum of all the angles of a triangle is $180^{\circ}$ ]
$\Rightarrow \quad \angle A>\frac{2}{3} \times 90^{\circ}$
i.e., $\angle A>\frac{2}{3}$ of a right angle Hence proved.