Prove that $\cot ^{2} \frac{\pi}{6}+\operatorname{cosec} \frac{5 \pi}{6}+3 \tan ^{2} \frac{\pi}{6}=6$
Question.
Prove that $\cot ^{2} \frac{\pi}{6}+\operatorname{cosec} \frac{5 \pi}{6}+3 \tan ^{2} \frac{\pi}{6}=6$
Prove that $\cot ^{2} \frac{\pi}{6}+\operatorname{cosec} \frac{5 \pi}{6}+3 \tan ^{2} \frac{\pi}{6}=6$
solution:
L.H.S. $=\cot ^{2} \frac{\pi}{6}+\operatorname{cosec} \frac{5 \pi}{6}+3 \tan ^{2} \frac{\pi}{6}$
$=(\sqrt{3})^{2}+\operatorname{cosec}\left(\pi-\frac{\pi}{6}\right)+3\left(\frac{1}{\sqrt{3}}\right)^{2}$
$=3+\operatorname{cosec} \frac{\pi}{6}+3 \times \frac{1}{3}$
$=3+2+1=6$
$=$ R.H.S
L.H.S. $=\cot ^{2} \frac{\pi}{6}+\operatorname{cosec} \frac{5 \pi}{6}+3 \tan ^{2} \frac{\pi}{6}$
$=(\sqrt{3})^{2}+\operatorname{cosec}\left(\pi-\frac{\pi}{6}\right)+3\left(\frac{1}{\sqrt{3}}\right)^{2}$
$=3+\operatorname{cosec} \frac{\pi}{6}+3 \times \frac{1}{3}$
$=3+2+1=6$
$=$ R.H.S