Prove that $(\operatorname{cosec} \theta-\sin \theta)(\sec \theta-\cos \theta)=\frac{1}{\tan \theta+\cot \theta}$.
Here we have to prove that
$(\operatorname{cosec} \theta-\sin \theta)(\sec \theta-\cos \theta)=\frac{1}{\tan \theta+\cot \theta}$
Left hand side
$=(\operatorname{cosec} \theta-\sin \theta)(\sec \theta-\cos \theta)$
$=\left(\frac{1}{\sin \theta}-\sin \theta\right)\left(\frac{1}{\cos \theta}-\cos \theta\right)$
$=\frac{\left(1-\sin ^{2} \theta\right)\left(1-\cos ^{2} \theta\right)}{\sin \theta \cos \theta}$
Now using the identity $\sin ^{2} \theta+\cos ^{2} \theta=1$, we get
Left hand side
$=\frac{\sin ^{2} \theta \cos ^{2} \theta}{\sin \theta \cos \theta}$
$=\frac{\sin \theta \cos \theta}{1}$
$=\frac{\sin \theta \cos \theta}{\sin ^{2} \theta+\cos ^{2} \theta}$
$=\frac{1}{\frac{\sin ^{2} \theta}{\sin \theta \cos \theta}+\frac{\cos ^{2} \theta}{\sin \theta \cos \theta}}$
$=\frac{1}{\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}}$
$=\frac{1}{\tan \theta+\cot \theta}$
Hence proved.