Prove that cos 4x = 1 – 8sin2 x cos2 x

Question:

Prove that $\cos 4 x=1-8 \sin ^{2} x \cos ^{2} x$

Solution:

L.H.S. $=\cos 4 x$

$=\cos 2(2 x)$

$=1-12 \sin ^{2} 2 x\left[\cos 2 A=1-2 \sin ^{2} A\right]$

$=1-2(2 \sin x \cos x)^{2}[\sin 2 A=2 \sin A \cos A]$

$=1-8 \sin ^{2} x \cos ^{2} x$

$=$ R.H.S.

Leave a comment