Question.
Prove that a cyclic parallelogram is a rectangle.
Solution:
Let ABCD be a cyclic parallelogram.
$\angle \mathrm{A}+\angle \mathrm{C}=180^{\circ}$ (Opposite angles of a cyclic quadrilateral) ... (1)
We know that opposite angles of a parallelogram are equal.
$\therefore \angle A=\angle C$ and $\angle B=\angle D$
From equation (1),
$\angle \mathrm{A}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow \angle \mathrm{A}+\angle \mathrm{A}=180^{\circ}$
$\Rightarrow 2 \angle A=180^{\circ}$
$\Rightarrow \angle \mathrm{A}=90^{\circ}$
Parallelogram ABCD has one of its interior angles as 90°. Therefore, it is a rectangle.
Let ABCD be a cyclic parallelogram.
$\angle \mathrm{A}+\angle \mathrm{C}=180^{\circ}$ (Opposite angles of a cyclic quadrilateral) ... (1)
We know that opposite angles of a parallelogram are equal.
$\therefore \angle A=\angle C$ and $\angle B=\angle D$
From equation (1),
$\angle \mathrm{A}+\angle \mathrm{C}=180^{\circ}$
$\Rightarrow \angle \mathrm{A}+\angle \mathrm{A}=180^{\circ}$
$\Rightarrow 2 \angle A=180^{\circ}$
$\Rightarrow \angle \mathrm{A}=90^{\circ}$
Parallelogram ABCD has one of its interior angles as 90°. Therefore, it is a rectangle.