Prove that
$\frac{\cos ^{3} x-\sin ^{3} x}{\cos x-\sin x}=\frac{1}{2}(2+\sin 2 x)$
To Prove: $\frac{\cos ^{3} x-\sin ^{3} x}{\cos x-\sin x}=\frac{1}{2}(2+\sin 2 x)$
Taking LHS,
$=\frac{\cos ^{3} x-\sin ^{3} x}{\cos x-\sin x} \ldots$ (i)
We know that,
$a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$
So, $\cos ^{3} x-\sin ^{3} x=(\cos x-\sin x)\left(\cos ^{2} x+\cos x \sin x+\sin ^{2} x\right)$
So, eq. (i) becomes
$=\frac{(\cos x-\sin x)\left(\cos ^{2} x+\cos x \sin x+\sin ^{2} x\right)}{\cos x-\sin x}$
$=\cos ^{2} x+\cos x \sin x+\sin ^{2} x$
$=\left(\cos ^{2} x+\sin ^{2} x\right)+\cos x \sin x$
$=(1)+\cos x \sin x\left[\because \cos ^{2} \theta+\sin ^{2} \theta=1\right]$
$=1+\cos x \sin x$
Multiply and Divide by 2, we get
$=\frac{1}{2}[2 \times(1+\cos x \sin x)]$
$=\frac{1}{2}[2+2 \sin x \cos x]$
$=\frac{1}{2}[2+\sin 2 x]$ [∵ sin 2x = 2 sinx cosx]
= RHS
∴ LHS = RHS
Hence Proved