Prove that $\frac{\tan \theta-\cot \theta}{\sin \theta \cos \theta}=\tan ^{2} \theta-\cot ^{2} \theta$.
Here we have to prove that $\frac{\tan \theta-\cot \theta}{\sin \theta \cos \theta}=\tan ^{2} \theta-\cot ^{2} \theta$
First we take LHS and use the identities
$\tan \theta=\frac{\sin \theta}{\cos \theta}$ and $\cot \theta=\frac{\cos \theta}{\sin \theta}$
$L H S=\frac{\tan \theta-\cot \theta}{\sin \theta \cos \theta}$
$=\frac{\frac{\sin \theta}{\cos \theta}-\frac{\cos \theta}{\sin \theta}}{\sin \theta \cos \theta}$
$=\frac{\sin ^{2} \theta-\cos ^{2} \theta}{\sin ^{2} \theta \cos ^{2} \theta}$
Now we take RHS
$R H S=\tan ^{2} \theta-\cot ^{2} \theta$
$=\frac{\sin ^{2} \theta}{\cos ^{2} \theta}-\frac{\cos ^{2} \theta}{\sin ^{2} \theta}$
$=\frac{\sin ^{4} \theta-\cos ^{4} \theta}{\sin ^{2} \theta \cos ^{2} \theta}$
$=\frac{\left(\sin ^{2} \theta+\cos ^{2} \theta\right)\left(\sin ^{2} \theta-\cos ^{2} \theta\right)}{\sin ^{2} \theta \cos ^{2} \theta}$
$=\frac{(1)\left(\sin ^{2} \theta-\cos ^{2} \theta\right)}{\sin ^{2} \theta \cos ^{2} \theta}$
$=\frac{\sin ^{2} \theta-\cos ^{2} \theta}{\sin ^{2} \theta \cos ^{2} \theta}$
$=L H S$
Hence proved.