prove that

Question:

$\frac{3 t-2}{3}+\frac{2 t+3}{2}=t+\frac{7}{6}$

Solution:

Given, $\frac{5 x+1}{2 x}=-\frac{1}{3}$

$\Rightarrow \quad 3(5 x+1)=-2 x$ [by cross-multiplication]

$\Rightarrow \quad 15 x+3=-2 x$

$\Rightarrow$ $15 x+2 x=-3$ [transposing $-2 x$ to LHS and 3 to RHS]

$\Rightarrow \quad 17 x=-3$

$\Rightarrow$ $\frac{17 x}{17}=\frac{-3}{17}$ [dividing both sides by 17 ]

$\therefore$ $x=\frac{-3}{17}$

Leave a comment