Prove that:

Question:

Prove that:

$\frac{\sin x+\sin 2 x}{1+\cos x+\cos 2 x}=\tan x$

Solution:

$\mathrm{LHS}=\frac{\sin x+\sin 2 x}{1+\cos x+\cos 2 x}$

$=\frac{\sin x+\sin 2 x}{\cos x+(1+\cos 2 x)}$

$=\frac{\sin x+2 \sin x \cos x}{\cos x+2 \cos ^{2} x} \quad\left[\because \sin 2 x=2 \sin x \cos x\right.$ and $\left.2 \cos ^{2} x=1+\cos 2 x\right]$

$=\frac{\sin x(1+2 \cos x)}{\cos x(1+2 \cos x)}$

$=\tan x=\mathrm{RHS}$

Hence proved.

Leave a comment