Prove that:
$2 \tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{7}=\frac{\pi}{4}$
To Prove: $2 \tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{7}=\frac{\pi}{4}$
Formula Used: $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$
Proof:
$\mathrm{LHS}=2 \tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{7}$
$=\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{7}$
$=\tan ^{-1}\left(\frac{\frac{1}{3}+\frac{1}{3}}{1-\left(\frac{1}{3} \times \frac{1}{3}\right)}\right)+\tan ^{-1} \frac{1}{7}$
$=\tan ^{-1}\left(\frac{6}{9-1}\right)+\tan ^{-1} \frac{1}{7}$
$=\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{1}{7}$
$=\tan ^{-1}\left(\frac{\frac{3}{4}+\frac{1}{7}}{1-\left(\frac{3}{4} \times \frac{1}{7}\right)}\right)$
$=\tan ^{-1}\left(\frac{21+4}{28-3}\right)$
$=\tan ^{-1} \frac{25}{25}$
$=\tan ^{-1} 1$
$=\frac{\pi}{4}$
$=$ RHS
Therefore LHS = RHS
Hence proved.